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A recent systematic analysis of the variety of thermal pericyclic reac- 

tions with respect to variations in the involved atoms' has led to an ap- 

preach for inventing new synthetic construction* reactions. We have applied 

this to a predicted five-ring fragmentation-rear;angement example (1). 
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The ally1 sulfones are easily synthesized by the displacement reaction 

of alkane- (or arene-) sulfinates with various ally1 bromides3 in 1:1 dioxane- 

water at room temperature (8 hours); the sulfinates were easily created in 

turn by bubbling sulfur dioxide into alkyl or aryl lithium solutions and fil- 

tering the precipitated salts. The liquid sulfones were distilled in vacua -- 

and characterized as pure materials by tic (in several chloroform-hexane sol- 

vent mixtures) and ir and nmr spectra. The sulfones prepared, with no opti- 

mization of yield, are listed in Table I. 

Table I. Formation and Pyrolysis of Ally1 Sulfones 

R-SO;:Li+ Bromide (yield) Pyrolysis product (yieldja 

t-Butyl ally1 (CHa) sCSOsCHsCH=C!Hs (73%) (CH3) sC!-CHaCH=CHs (80%) 

crotyl (CHs)sCSOsCH@I=CHCHs (72% tars/300' 

cinnamyl (CH3) aCSOaCHaCH=CHCsHs (82%) tars/300' 

n-Butyl ally1 CHa(CHa) sSOsCH#i=CHs (70%) CHs (CH2) s-CHsCH=CHs (34% 

crotyl CHs(CHa) sSOsCH$H=CHCHs(68%) CH3(CH2) s-CH(CHs)CH=CHs(>l0% 

p-Tolyl ally1 p-CHsCsH&OsCHsCE=CHz (78%) p-CHaCsH4-CHaCH=CHs (53% 

a Products were analyzed by glc and nmr comparison with authentic compounds. 

Yields by glc (toluene as internal standard) on a 12 ft. 5% S.E.-30 COluaUI. 

Pyrolysis of t-butyl ally1 sulfone at 290' for 15 minutes (optimum con- 

ditions) in a sealed tube led to sulfur dioxide and an 80% yield of 
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4,4-dimethyl-l-pentene, identified by glc and nmr comparison with an authentic 

sample. The fact that the sulfone was entirely in the gas phase at 290° when 

reaction occurred supports the presumption of a concerted thermal reaction. 

The isomerized sulfone, (CHa) sCSOsCH=CHCHs (Xmax 255 nm), was formed by stir- 

ring t-butyl ally1 sulfone with potassium carbonate/acetone 6 hours at room 

temperature. As anticipated from equation (11, this isomer undergoes no re- 

action on pyrolysis below 400°, at which temperature only tars are formed. 

The other examples shown in Table I were pyrolyzed by syringe injection 

into a heated tube (1 x 30 cm) filled with quartz beads and the products col- 

lected in a cold trap; they generally required higher temperatures (350-400°) 

although temperature (and yield) optimization was not undertaken for these 

examples. The reaction proceeded as well with the p-tolyl sulfone, implying 

that carbonium ion character at the transfered carbon is not a feature of the 

mechanism. The relative ease (lower temperature) of the t-butyl case suggests 

some steric facilitation of the carbon-sulfur bond cleavage but increased 

substitution of the ally1 component appears to block the carbon transfer in 

the two other t-butyl sulfones which produced only tars at 300'. 

The reaction belongs to an important synthetic class which construct 

carbon-carbon single bonds by simple thermolysis; the present example adds 

not only a potentially useful method to the small collection of synthetic re- 

actions capable of producing guaternary carbons but also a new way of convert- 

ing an aromatic sulfonyl substituent to an alkyl one. 
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At present nothing is 

known of the stereochemistry of bond formation, although the presumptive peri- 

cyclic pathway implies a parallel with the stereochemistry of other 2,3-sigma- 

tropic rearrangements. 
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